Reducing Complexity of HEVC: A Deep Learning Approach
نویسندگان
چکیده
High Efficiency Video Coding (HEVC) significantly reduces bit-rates over the preceding H.264 standard but at the expense of extremely high encoding complexity. In HEVC, the quad-tree partition of coding unit (CU) consumes a large proportion of the HEVC encoding complexity, due to the bruteforce search for rate-distortion optimization (RDO). Therefore, this paper proposes a deep learning approach to predict the CU partition for reducing the HEVC complexity at both intraand inter-modes, which is based on convolutional neural network (CNN) and longand short-term memory (LSTM) network. First, we establish a large-scale database including substantial CU partition data for HEVC intraand inter-modes. This enables deep learning on the CU partition. Second, we represent the CU partition of an entire coding tree unit (CTU) in the form of a hierarchical CU partition map (HCPM). Then, we propose an early-terminated hierarchical CNN (ETH-CNN) for learning to predict the HCPM. Consequently, the encoding complexity of intra-mode HEVC can be drastically reduced by replacing the brute-force search with ETH-CNN to decide the CU partition. Third, an early-terminated hierarchical LSTM (ETH-LSTM) is proposed to learn the temporal correlation of the CU partition. Then, we combine ETH-LSTM and ETH-CNN to predict the CU partition for reducing the HEVC complexity at inter-mode. Finally, experimental results show that our approach outperforms other state-of-the-art approaches in reducing the HEVC complexity at both intraand inter-modes.
منابع مشابه
A Fast Block Size Decision For Intra Coding in HEVC Standard
Intra coding in High efficiency video coding (HEVC) can significantly improve the compression efficiency using 35 intra-prediction modes for 2N×2N (N is an integer number ranging from six to two) luma blocks. To find the luma block with the minimum rate-distortion, it must perform 11932 different rate-distortion cost calculations. Although this approach improves coding efficiency compared to th...
متن کاملA Fast Block Size Decision For Intra Coding in HEVC Standard
Intra coding in High efficiency video coding (HEVC) can significantly improve the compression efficiency using 35 intra-prediction modes for 2N×2N (N is an integer number ranging from six to two) luma blocks. To find the luma block with the minimum rate-distortion, it must perform 11932 different rate-distortion cost calculations. Although this approach improves coding efficiency compared to th...
متن کاملFast Intra Mode Decision for Depth Map coding in 3D-HEVC Standard
three dimensional- high efficiency video coding (3D-HEVC) is the expanded version of the latest video compression standard, namely high efficiency video coding (HEVC), which is used to compress 3D videos. 3D videos include texture video and depth map. Since the statistical characteristics of depth maps are different from those of texture videos, new tools have been added to the HEVC standard fo...
متن کاملHeterogeneous Video Transcoder for H.264/AVC to HEVC: Review
As a successor to the H.264/Advance Video Coding (AVC), High Efficiency Video Coding (HEVC) is invented to get more compression and high quality video. But HEVC increases the complexity of video coding. To reduce this complexity various methods are proposed with different approach which also enhance the video compression and quality of video. This paper contains different techniques for video t...
متن کاملActive Learning: An Approach for Reducing Theory-Practice Gap in Clinical Education
Introduction: The gap between theory and practice in clinical fields, including nursing, is one of the main problems that many solutions have been suggested to eliminate it. In this article, we have tried to investigate its solution through active learning. Methods: In this review article, searching articles published during 2000-2012 was done through library references, scientific databases. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1710.01218 شماره
صفحات -
تاریخ انتشار 2017